Biomarkerless targeting and photothermal cancer cell killing by surface-electrically-charged superparamagnetic Fe3O4 composite nanoparticles.

نویسندگان

  • Xiao Han
  • Zicheng Deng
  • Zi Yang
  • Yilong Wang
  • Huanhuan Zhu
  • Bingdi Chen
  • Zheng Cui
  • Rodney C Ewing
  • Donglu Shi
چکیده

A major challenge in cancer therapy is localized targeting of cancer cells for maximum therapeutic effectiveness. However, due to cancer heterogeneities, the biomarkers are either not readily available or specific for effective targeting of cancer cells. The key, therefore, is to develop a new targeting strategy that does not rely on biomarkers. A general hallmark of cancer cells is the much increased level of glycolysis. The loss of highly mobile lactate from the cytoplasm inevitably removes labile inorganic cations to form lactate salts and acids as part of the lactate cycle, creating a net of negative surface charges. This net of negative charges on cancer cell surfaces biophysically distinguishes themselves from normal cells. In this study, cancer cells are targeted by using positively-charged, fluorescent, superparamagnetic Fe3O4-composite nanoparticles. The positively-charged Fe3O4 composite nanoparticles bind predominantly to cancer cells due to their negatively-charged surfaces. Upon electrical-charge-mediated Fe3O4 nanoparticle binding onto cancer cells, irradiation by using an 808 nm laser is subsequently applied to induce photothermal hyperthermia that kills the cancer cells directly. The negatively-charged composite nanoparticles are found, however, not to target and bind the cancer cells due to the electrostatic repulsive force between them. This unique strategy paves a new path for effective targeting and direct cancer cell killing without relying on any biomarkers and anticancer drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells.

Superparamagnetic Fe3O4 nanoparticles are appealing materials for heat activated killing of cancer cells. Here, we report a novel method to enhance the heat activated killing of cancer cells under an AC magnetic field (AMF) by introducing a polyaniline impregnated shell onto the surface of Fe3O4 nanoparticles. These polyaniline shell cross-linked magnetic nanoparticles (PSMN) were prepared by i...

متن کامل

An investigation into the photothermal effects of multi- functional gold coated Fe3O4 Nanoparticles in the presence of external magnetic field and NIR laser irradiation on model of melanoma cancer cell line B16F10 in C57BL/6 mice

Introduction: Photothermal therapy using gold nanoshells is one of cancer therapy methods. Gold nanoshells generally consist of a silica core and a thin gold shell. Fe3O4@Au core-shell can be used for magnetic targeted therapy. The objective of this study was investigation of the photothermal effects of magnetically targeted Fe3O4@Au NPs and NIR laser irradiation on model of me...

متن کامل

Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging

The ability to selectively destroy cancer cells while sparing normal tissue is highly desirable during the cancer therapy. Here, magnetic targeted photothermal therapy was demonstrated by the integration of MoS2 (MS) flakes and Fe3O4 (IO) nanoparticles (NPs), where MoS2 converted near-infrared (NIR) light into heat and Fe3O4 NPs served as target moiety directed by external magnetic field to tum...

متن کامل

Multifunctional Core/Shell Nanoparticles Cross-linked Polyetherimide-folic Acid as Efficient Notch-1 siRNA Carrier for Targeted Killing of Breast Cancer

In gene therapy, how genetic therapeutics can be efficiently and safely delivered into target tissues/cells remains a major obstacle to overcome. To address this issue, nanoparticles consisting of non-covalently coupled polyethyleneimine (PEI) and folic acid (FA) to the magnetic and fluorescent core/shell of Fe3O4@SiO2(FITC) was tested for their ability to deliver Notch-1 shRNA. Our results sho...

متن کامل

Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles.

The photothermal effect of Fe3O4 magnetic nanoparticles is investigated for cancer therapy both in vitro and in vivo experiments. Heat is found to be rapidly generated by red and near-infrared (NIR) range laser irradiation of Fe3O4 nanoparticles with spherical, hexagonal and wire-like shapes. These Fe3O4 nanoparticles are coated with carboxyl-terminated poly (ethylene glycol)-phospholipid for e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2017